邊的種類undirected edge
:directed edge (u, v)
:u常被稱為origin
、tail
,v常被稱為destination
、head
圖的種類undirected graph (undigraph)
:只含無向邊的graphdirected graph (digraph)
:只含有向邊的graphmixed graph
:同時含有無向邊和有向邊的graphmultigraph
:有很多組\((u,v) \in E\)loop
:存在\((i,i) \in E\)simple graph
:無loop,非multigraphcomplete graph
:每對頂點都有邊連接,記做 \(K\_n\)bipartite graph
:跟另一團的相連,但不跟自己團相連complete bipartite graph
:A團中的每個點各連到B團中的每個點,記做\(K\_{m,n}, |A| = m, |B| = n\)degree
:連到一頂點的邊的數量
\[ \sum_{i \in V} d_i = 2 * |E| \]
\[ \sum_{i \in V} d_i^{in} = \sum_{i \in V} d_i^{out} \]
isolated vertex
:沒有任何邊連到它的vertex
subgraph
:induced subgraph
:刪掉部份點,且刪掉連到那些點的所有邊spanning subgraph
:含所有的點(即點集合同原本的graph),但不一定有所有的邊regular
:max degree = min degreeN-regular
:相等的degree = Nunderlying graph
:digraph的unconnected版本
connected component
:K(G)
:graph G中connected component的個數strongly connected (DAG)
:對digraph中的任音兩點u, v, u ≠ v,皆存在一條u → v的路徑weakly connected
:若digraph不為strongly connected,但其underlying graph為connected,則稱之biconnected
:無articulaton point的無loop,connected undirected graphbiconnected component
:一個graph中,最大的binnected subgraph
planar (graph)
:可以被畫成沒有邊疊在一起的graphplanar drawing
:畫planar graph的畫法:
:
``:
matching
:maximum matching
:perfect matching
:若M滿足 |V| = 2 * |M|complete matching
:
``:
MST包含G的所有點,↑鎮\( (x,y) \in G \) 但\( \notin T \),依照MST的edge把所有點分成二堆後,x, y不在同一堆
證明:
假設T是G的MST,且含有G中某些cycle最重的edge。G的割集CT(u, v)define by and (u, v) has to cut another edge, say, (x, y) of C。由(u, v)的定義(及性質一),可知W(x, y) < W(u, v),與T的性質矛盾
elementary contraction
:若把H中相鄰的某兩點「黏」在一起可得到G,則稱G為H的──
其中,H稱為contractible
to Ghomeomarphic
:若二個graph皆可由相同的某graph(可以是第三者graph)在邊上加點而得,則稱此二graph為──clique
:G = (V,E), \(V' \subseteq V\) ,其中V'內任兩點皆相鄰independent set
:G = (V,E), \(V' \subseteq V\),其中V'內任兩點皆不相鄰vertex cover
:G = (V,E), \(V' \subseteq V\),其中G的每一邊都至少會接到V'中的一點(V-independent set
)
forest
:acyclic, undirected graph深度(depth)
:由node v上溯至根節點的edge數。例如:根節點的depth為0。高度(height)
:node v至離它最遠的leaf的edge數。path
:由祖先到後代的路徑length
:path中的edge數degree
:相鄰的點的個數,或相接的邊的個數ordered tree
:child在左在右有差(但當child中有一個時,在左在右都沒差)unordered tree
:childe左左在右沒差